
© World’s Poultry Science Association 2007
World’s Poultry Science Journal, Vol. 63, June 2007 
Received for publication August 14, 2006
Accepted for publication January 24, 2007 233

DOI: 10.1017/S0043933907001432

Mechanisms of aggression and
production in chickens: genetic variations
in the functions of serotonin,
catecholamine, and corticosterone
H.W. CHENG1* and W.M. MUIR2

1Livestock Behaviour Research Unit, USDA-ARS, W. Lafayette, IN 47907; 2Animal
Sciences Department, Purdue University, W. Lafayette, IN 47907, USA
*Corresponding author: hwcheng@purdue.edu

The neuroendocrine systems, such as dopamine (DA) and serotonin (5-HT) as well as
corticosterone (CORT), are involved in regulating behavioural patterns and
reproduction in humans and other mammals. Similar functions of neuroendocrine
system may present in laying hens. To test the hypothesis, two divergent chicken lines
were used in the study. Each line has distinct levels of aggressiveness and
productivity at a group setting and exhibits differen susceptibility to various
environmental stressors. We found that, at 21 wks of age, LGPS (Low Group
Productivity and Survivability) birds had significantly higher blood concentrations
of DA and epinephrine than the KGB birds (Kind Gentle Birds, also previously
termed HGPS, birds with a High Group Productivity and Survivability) (P<0.01,
respectively). The blood concentration of norepinephrine was not significantly
different between the lines but the ratio of epinephrine to norepinephrine was higher
in LGPS birds (P<0.01). The blood concentration of 5-HT was also significantly
higher in LGPS birds compared to KGB birds (P<0.01). In contrast, KGB birds
tended to have a higher level of blood CORT (P=0.1). The results suggest that genetic
selection for productivity and survivability with domestic behaviours alters the
birds’ neuroendocrine homeostasis. The selection-associated plasticity of the
neuroendocrine system in controlling animal aggression and productivity were
discussed in the article.
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Abbreviation Key: CNS = Central nervous system; CORT = Corticosterone; DA =
Dopamine; DβH = Dopamine-β-hydroxylase; EP = epinephrine; DXL = Commercial
Dekalb XL line; HA line = chicken line selected for high antibody response to SRBC;
HAP axis = Hypothalamic-pituitary-adrenal axis; H:L = Heterophil:lymphocyte ratio;
KGB = Kinder Gentler Bird selected for high group productivity and longevity; LA line =
chicken line selected for high antibody response to SRBC; LH = luteinising hormone;
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LHRH = luteinising hormone-releasing hormone; LGPS = chicken line selected for low
group productivity and survivability; MHC = Major histocompatibility complex; NE =
norepinephrine; RIA = radioimmunoassay; SRBC = Sheep red blood cell; TH = tyrosine

Introduction

Aggression, in nature, is associated with competition (natural selection) for survival and
reproduction (Fraser and Rushen, 1987; Duncan, 1998). However, in artificial production
environments, such as in poultry production, aggression causes increased social stress,
feather and body damage, in some instances these injuries leading ultimately to
cannibalism. Cannibalism is a major concern related non-beaktrimmed bird deaths in
current housing environments (Appleby and Hogarth, 1991; Tablante et al., 2000; Glatz,
2005; Rodenburg et al., 2005). To prevent the expression of these injurious behaviours, it
is necessary to understand the cellular mechanisms involved in regulating bird domestic
behaviour and reproduction.

In humans and other mammals, alterations of neuroendocrine homeostasis have been
thought to be a final common pathway in controlling individuals’ behavioural patterns and
productivity. Specifically, monoamine abnormities are found to be associated with
aggressive behaviours (Berman and Coccaro, 1998) and alterative reproduction (Sharp et
al., 1984; Barraclough 1992). Serotonin (5-HT) and its metabolites, 5-
hydroxyindoleacetic acid (5-HIAA) as well as density of its receptors have been used as
major indicators of abnormal behaviours, including aggression (Valzelli, 1984; Bell and
Hobson, 1994; Popova et al., 1997; Barak and Mashiach, 2003; Abumariam et al., 2006).
In addition, 5-HT directly and indirectly affects reproductive performances (Tuomisto and
Mannisto, 1985; Sirotkin and Schaeffer, 1997). Dopamine (DA) is another monoamine
involved in controlling domestic behaviour and reproduction (Snider and Kuchel, 1983;
Kudriavtseva et al., 1988; Miczek et al., 1994; Kuikka et al., 1998), and dopaminergic
receptor 2 (D2) gene represents one of the few single-site loci associated with abnormal
behaviours in human (Blum and Sheridan, 1995a, b). Catecholamines (like epinephrine,
EP and norepinephrine, NE) and corticosterone (CORT), known as “stress hormones”, are
functionally involved in controlling domestic behaviours (Servo and Naumenko, 1990),
linked to mood control (fight or flight), and engaged in cope-with-stress as a sense of well-
being (Kopin, 1984; Rolih and Ober, 1995; Kilgour and Szantar-Coddington, 1997;
Pollard, 1997). Biological dysregulation of these biogenic amines or hormones may cause
brain structural as well as functional reorganization (de Kloet et al., 1996; Ferris, 2000),
which in turn affect animal’s cope styles and well-being.

The present study was designed to determine if bird neuroendocrine system has similar
functions in controlling aggression and production since there is evidence that suggests
bird brains possess a core “social behavioural network” which is humongous to the social
behavioural network of mammals (Goodson, 2005). In addition, there are similar
distributions of neurotransmitter receptors, including dopaminergic and serotonergic
receptors between birds and mammals (Dietl and Palacios, 1988; Richfield et al., 1987;
Walker et al., 1991).

Two divergent chicken lines, KGB (kind gentle bird) and LGPS (low group productivity
and survivability bird, previously termed MBB, mean bad bird), were used in the study.
Each line has distinct leves of aggressiveness and productivity at a group setting and
exhibits different susceptibility to environmental stressors (Hester et al., 1996 a,b; Cheng
et al., 2001a,b; Cheng and Muir, 2005). The differences in behavioural and physiological
characteristics of these lines may be reflected in changes in the capability of the neuronal
system in response to stimuli. The objective of the study was to determine whether the
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effects of selection on behavioural adaptation and productivity could lead to selection-
associated functional alterations of the neuroendocrine systems in releasing endogenous
psychotropic compounds, such as 5-HT, DA, and CORT; and to evaluate whether the
changes of these monoamines and CORT an be used as physiological indicators of an
animal’s coping ability and well-being. 

Material and methods

DEVELOPMENT OF THE GENETIC LINES
The process for developing the genetic lines, KGB and LGPS, has been described

previously (Muir, 1996; Cheng and Muir, 2005). Briefly, a programme termed “group
selection” was used for developing the research lines. The programme turns “survival of
the fittest” emphasized on the individuals to “survival of the adequate” in the group.
Results from group selection studies have showed that productivity can be increase while
at the same time well-being improved.

The 8th generation was produced from mating 1248 hens with 312 roosters selected at
random from 20 wk old pullets and roosters of the 7th generation. Eggs were collected for
2 weeks. Chicks were reared using standard management practices (Muir, 1996), and at 18
wks of age, 9216 pullets were housed by half-sib family in 768 12-birds cages. After 52
wks of production (72 wk of age), birds from 12 cages with the highest group productivity
(egg number) and the lowest mortality form cannibalism and flightiness, along with their
full and half sib brothers, were selected for the KGB line. To establish a comparison line,
differing only in the criteria of selection, birds from 12 cages with the lowest group
productivity and the highest mortality, along with their full and half sib brothers, were
used to establish a reverse selected LGPS line.

Birds were randomly mated within each line, 4 hens/one rooster; avoiding full or half-
sib mating to establish the 9th generation of the KGB and the 2nd generation of the LGPS
lines which were used as the genetic material for this research. The detail of the selection
technology and rearing programme was reported previously (Muir, 1996; Cheng and
Muir, 2005). Pullets of each genetic line were not beak trimmed, and reared under the
same conditions, i.e., hatched, vaccinated for Marek’s and Newcastle’s disease, and
maintained using standard management practices in raised wire cages up to 17 wk of age.
At 17 wk of age, birds from each genetic line were randomly assigned to individual cages,
each providing 1085 cm2 per bird. Feed and water were provided for ad libitum
consumption. Overhead lights were on daily from 0700 until 1900 h initially, and were
increased by 15 min/wk. Light duration was at 13 h daily when the study was performed.

Chicken care guidelines were in strict accordance with the rules and regulations set by
Federation of Animal Science Societies (Graig et al., 1999). Experimental protocols were
approved by the institutional Animal Care and Use Committee at Purdue University.
Efforts were made to minimize animal suffering and the number of birds to be used.

BLOOD SAMPLING 
Based on previous observations, the main behavioural adaptation of the KGB birds in

responses to social stress became stable after the first 3 wks in responses to social stress
(Craig and Muir, 1996a, b). At 21 wks of age, 24 birds from the KGB and LGPS lines,
without a plumped egg confirmed by palpating, were bled between 09:00 and 10:00 h
(Savory and Mann, 1997). A 5 ml blood sample was collected into a heparinised tube from
the brachial vein of each bird within 2 min of removing from its cage. For measuring
concentration of 5-HT, the whole blood was used. For measuring concentrations of
catecholamines and CORT, blood samples were centrifuged at 700 g for 15 min at 20ºC
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using Sorvall BC 3B plus centrifuge. Plasmas were kept on ice for further processing or
kept at –80ºC until measurement. 

HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ASSAY (HPLC ASSAY)
To measure blood concentrations of catecholamines, i.e., DA, EP and NE, the ESA

plasma catecholamine analysis kit was used. Briefly, duplicate plasma samples were
acidified with 4M perchloric acid, followed by deproteinization with the supplied reagent.
After centrifugation, the acid-supernatants with internal standard were added and
absorbed onto an alumina minicolumn to bind the catecholamines. HPLC columns were
then rinsed and eluted with the supplied solutions, respectively. Eluents were injected into
the reverse-phase columns and catechols were detected by liquid chromatography with
electrochemical detection. The mobile phase (75 mM Na2HPO4, 1.7 mM OSA, 25 µM
EDTA, 10% CH3CN and 100uL/L Triethylamine, adjusted to pH 3.00 with Phosphoric
acid) flow rate was 1.3 mL/min. Catecholamine concentrations were calculated from a
reference curve constructed using the provided standards. Concentrations were obtained
as picograms per mL.

To measure blood concentration of 5-HT, whole blood samples were acidified in
duplicate using 4M perchloric acid and freshly prepared 3% ascorbic acid. After
centrifugation, the acid-supernatants were injected into the columns. The mobile phase
flowed rate was 1.0 mL/min., and the concentration of 5-HT was calculated from a
reference curve made using standard 5-HT. 

RADIOIMMUNOASSAY
Total plasma CORT was measured in triplicate using a commercial 125I-souble antibody

CORT radioimmunoassay (RIA) kit with modification as company suggestion for using in
birds and as previously described (Renden et al., 1994; Kannan, 1997). In order to validate
for parallelism and recovery in birds, adjustments of dilution to 1 to 5, were made, i.e., 20
ul sample to 80 ul steroid diluent. The concentration of CORT was calculated from a
reference curve that ranges from 0.1 ng/mL (83% binding) to 4.0 ng/mL (14.9% binding).
Addition of known amounts of unlabeled CORT to plasma samples, i.e., producing
theoretical concentrations of 0.5, 1.0 and 2.0 ng/mL, resulted in 0.48, 1.08, and 1.97
ng/mL, respectively (CV = 5.0%). The sensitivity of the assay was 0.02 ng/mL. All
samples within the experiment were performed at same time. 

STATISTICAL ANALYSIS
The experimental design was completely randomized with genetic lines as the main

effect. Results were assessed statistically using one-way ANOVA, and intergroup
differences were analyzed by Newman-Keuls post hoc test. 

Results

LINE DIFFERENCES IN PRODUCTIVITY AND SURVIVABILITY
Productivity and survivability were significantly different among the 8th generation

KGB and LGPS lines as well as the overall line from which the selected lines came. The
KGB birds had significantly higher productivity than the birds of the overall line which
was in turn greater than the LGPS birds, in terms of egg number per cage housed, and egg
mass per day per cage, but not egg weight (P<0.0 1, Table 1). In addition, mortality from
cannibalism was significantly higher and survivability was greatly lower in the LGPS line
compared to both KGB line and overall line (P<0.01, Table 1).
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GENETIC SELECTION-INDUCED ALTERATIONS IN PLASMA CONCENTRA-
TIONS OF SEROTONIN

Blood concentration of 5-HT were measured using HPLC (Figure 1), and the reference
cures created using commercially purified 5-HT in this study was reliable and repeatable
in duplicate running the samples (R2 = 1.0, Figure 1a). There was a significantly higher
blood concentration of 5-HT in the LGPS birds than in the KGB birds (1.43 vs. 1.18
mg/ml, P<0.01) (Figure 1b). 

GENETIC SELECTION-INDUCED ALTERATIONS IN PLASMA CONCENTRA-
TIONS OF CATECHOLAMINES

Genetic selection-induced different alterations of blood concentrations of
catecholamines between the lines were shown in the Figure 2 and Table 2. Based on the
reference cure developed using commercial stand (R2 = 1.0, Figure 2a), the LPGS birds
exhibited higher concentrations of DA and EP as compared to the KGB birds, i.e., 2.42 vs.
0.59 ng/mL (P<0.01) and 0.59 vs. 0.30 ng/mL (P<0.01), respectively (Table 2). The
concentration of NE was not significantly different between the selected lines, but the ratio
of EP/NE was significantly higher in the birds of the LGPS line (72.5% vs. 34.0%,
P<0.01, Table 2). 

GENETIC SELECTION-INDUCED ALTERATIONS IN PLASMA CONCENTRA-
TIONS OF CORTICOSTERONE

Genetic heritability related changes of blood concentration of CORT were measured
using IRA, and the selected line differences were presented in the Table 2. The mean blood
concentrations of CORT were 1.84±0.19 and 1.49±0.21 ng/mL for the KGB and LGPS
birds, respectively (Table 2). There was a trend showing a higher blood concentration of
CORT in the KGB birds than in the LGPS birds.

Discussion

The results of the present study provide evidence that selection for group productivity and
longevity with reducing cannibalism and flightiness in birds results in altering regulation
of the neurochemical system, including changes in blood concentrations of 5-HT, DA, EP,
NE, and CORT. The data is consistent with previous findings in mammalian research that
domestication of animals is associated with hereditary reorganization of the
neuroendocrine system (Naumenko et al., 1987, 1989; de Kloet et al., 1996; Ferris, 2000)
and changes of neurochemical homeostasis (Bilzard et al., 1983; Crusio, 1996). The
present findings further support our hypothesis that positive changes in birds’ domestic
behaviours and productive performances resulting from selective breeding likely reflect
changes in the link between the nervous and endocrine systems. That is, when selection
pressure is applied to productivity and survival as well as associated domestic behaviours
by reducing cannibalism and flightiness, the pressure is simultaneously applied to the
neuroendocrine system, resulting in changes of physiologic functions that control coping
ability such as improving survivability and productivity.

SEROTONIN AND SELECTION FOR HIGH PRODUCTIVITY AND LONGEVITY
WITH REDUCING CANNIBALISM 

There were different levels of serotonin concentrations between the lines selected for
high or low productivity and survivability. The results are consistent with the hypotheses
that serotonin has multifunctional roles in modulating many types of behavioural and
physiological processes, including feeding, sexual and aggressive behaviour (Mench and
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Shea-Moore, 1995; Weiger, 1997; Olivier et al., 1998). Abnormalities of blood and brain
5-HT and its metabolite, 5-HIAA, as well as the density of its receptors have been used as
major indicators of alterations in behavioural adaptability and reproduction (Bell and
Hobson 1994; Dinan, 1996; Popova et al., 1997; Maswood et al., 1998; Abumaris et al.,
2006; Nomura and Nomaura, 2006). 

Serotonin functions as an inhibitory factor of aggression in controlling domestic
behaviour (Popova et al., 1975). Depletion or decrease of 5-HT concentration and ratio of
5-HIAA/5-HT in the central nervous system (CNS) have been implicated in dysfunctional
behaviours, including aggressiveness and violence in human and non-human animals
(Higley et al., 1996; Unis et al., 1997; Parmigiani et al., 1999; Popova et al., 1999; Gollan
et al., 2005; Popova, 2006; Wrase et al., 2006), and cannibalism in birds (Barofsky et al.,
1983). However, biological roles of blood 5-HT in behavioural adaptation and
motivational regulation are unclear. Decreased, increased and unchanged blood 5-HT
concentrations have been found in association with behavioural dysfunctions, including
aggressiveness (Cook et al., 1995; Hanna et al., 1995; Moffitt et al., 1998). The
conflicting data from different investigations could be related to different genetic selection
programmes, species, behavioural evaluations and stressors used as well as duration and
frequency of stressor presentation. Our results that higher blood 5-HT level associated
with lower survivability resulting from higher cannibalism and flightiness in the LGPS
birds is consistent with our hypothesis that different patterns of secreting of blood 5-HT
are associated with specific behavioural parameters. Blood 5-HT level, positively
correlated with aggressiveness, were also found in adolescents with behavioural conduct
disorder (Unis et al., 1997), borderline mental retardation patients with impaired impulse
control and stress-induced aggression (Lenders et al., 1998), and dominant male monkeys
(Steklis et al., 1986; Raleigh et al., 1991). The association between 5-HT levels and
aggressive behaviours supports our view that blood concentration of 5-HT could serve as
a physiological indicator of the animal’s coping ability to stress as well as a biological trait
marker for domestic behaviours. In support of this view, other studies have determined
that blood 5-HT levels are under genetic regulation (Jerneij and Cicin-Sain, 1990: Cook
and Leventhal, 1996), and its levels have been used as a stable marker in monitoring the
course of certain dysfunctional behaviours (Stahl et al., 1982), such as higher platelet 5-
HT concentrations in schizophrenic patients (Muck-Seler et al., 1999) and autism (Cook
and Leventhal, 1996). Values of blood 5-HT also represent a heritable stable biological
parameter in rodents (Jernej and Cicin-Sain 1990). As such rats, reverse selected for high
and low platelet serotonin levels, were not affected by periodic oscillations, sex or age. 

In the periphery, all 5-HT is stored in platelets (Anderson et al., 1987; Jernej and Cicin-
Sain, 1990), and platelet 5-HT is exchangeable with blood 5-HT but not brain 5-HT
(Pietraszek et al., 1992; Cook and Leventhal, 1996). Since the method used to measure 5-
HT levels in platelets is to measure it in whole blood (Cook and Leventhal, 1996) and
more than 99% of whole blood 5-HT is contained in platelets (Anderson et al., 1987;
Martin and Artigas, 1992), the two can be considered as belonging to a single
compartment (Cook and Leventhal, 1996; Jernej et al., 2000). Previous studies have
shown that 5-HT systems between blood platelets and serotonergic neurons share some of
anatomical and functional similarities (Stahl, 1977; Yan et al., 1993), such as the active
carrier mechanism, intracellular storage, receptors, and binding sites (Briley et al., 1980;
Paul et al., 1980; Pletscher, 1988), platelets have been proposed as a peripheral tool for
observation of central 5-HT system. However, the possibility of using platelets as a model
system for brain neurons remains unclear. Previous studies have revealed that 5-HT levels
in the CNS and peripheral tissues are genetically regulated differently (Popova, 1978;
Lampagnani, 1986; Pietraszek et al., 1992), and there are no correlations of either MAO
activity (Young et al., 1986; Virkkunen and Linnoila 1997) or 5-HT levels between brain
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and platelet or blood (Popova, 1978; Takada et al., 1996). Since 5-HT can not pass the
brain-blood–barrier (Pietraszek et al., 1992), blood and brain could be assumed as two
compartments. About 90% of cerebral 5-HIAA effluxes directly into the blood (Pietraszek
et al., 1992) but there is no correlations between the changes in the CSF 5-HIAA and brain
5-HT (Martin and Artigas, 1992). These differences might be related to different
mechanisms involve in regulating the uptake, synthesis and release of 5-HT between
platelets and neurons (Chou et al., 1983). For example, the binding potential (Bmax/Kd)
of 5-HT 2A receptors on platelets was not correlated with that of brain, and changes of 5-
HT2A receptors in platelets may not be a sign of similar changes in the CNS (Cho et al.,
1999). Ongoing studies in our laboratory aim to determine whether there are different
cellular mechanisms underlying selection pressure-induced changes of 5-HT systems
between periphery and brain in the presently selected lines. 

The finding that LGP birds, compared to KGB birds, had higher concentrations of
circulating 5-HT but lower productivity is consistent with the reports that 5-HT has a
tonic, inhibitory effect on sexual behaviour and reproduction (Sirotkin and Schaeffer,
1997), such as inhibition of luteinising hormone (LH) secretion and ovulation (Nagatsuka,
1983; Morello et al., 1992; Lorrain et al., 1998). However, the roles of 5-HT in modulating
sexual behaviour in female has been re-evaluated (Mendelson 1992), and is concluded that
5-HT can either inhibit or facilitate gonadotropins secretion, sexual hormone release, and
sexual behaviour, which depends on which brain regions are involved (Nagatsuka, 1983;
Gonzalez et al., 1997; Wolf et al., 1998), and what subtypes of 5-HT receptors are
activated (Mendelson, 1992; Maswood et al., 1998). As such effects of 5-HT on sexual
behaviour were positively correlated to the stimulation of the pre-optic area (POA) and
median eminence but negatively correlated to the stimulation of the ventromedial nucleus
(VMN), zona incerta and arcuate nucleus (Gonzalez et al., 1997). 5-HT2 receptors in the
POA were involved in the stimulatory function of 5-HT, while 5-HT1A receptors
mediated the inhibitory role in the VMN. Systemic injection of the selective 5-HT2 and 5-
HT1 agonists, MK 212 and Ru 24969, sexual behaviour was facilitated and inhibited,
respectively (Wilson and Hunter 1985). In addition, inhibited sexual behaviour was
appeared by peripherally administrated 5-HT2 antagonist, pirenperone (Mendelson and
Gorzalka, 1985), and its effect was attenuated by the 5-HT agonist, quipazine. At present,
cellular mechanisms that hereditarily regulate productivity between the selected lines are
unclear. A further study has been set up in our lab to investigate selection pressure-induced
neuronal morphofunctional plasticity, including 5-HT system, associated with different
reproductive capability of KGB and LGPS birds. 

DOPAMINE AND SELECTION FOR HIGH PRODUCTIVITY AND LONGEVITY
WITH REDUCING CANNIBALISM 

At physiological condition, DA is released centrally as a neurotransmitter, and is
processed peripherally as a precursor of NE (Kuchel, 1991). Since DA cannot cross the
blood-brain barrier (BBB), circulating DA could be either from adrenal cells or from
leukocytes (Bergquist et al., 1998). However, during pathological condition, DA can be
released from adrenomedullary chromaffin cells, and the adrenal glands can be
transformed from an adrenergic to a dopaminergic source (Snider and Kuchel, 1983).
Abnormalities in the blood and brain DA systems have been associated with dysfunctional
behaviours as well as with declined coping ability with stress (Driscoll et al., 1998;
Kuikka et al., 1998; van Erp and Miczek, 2006; Watt et al., 2006). In agreement with such
findings, the selected lines under a genetically selected pressure conducted with a social
stressor resulted in bi-directional changes of both blood DA concentrations and coping
abilities. KGB birds, selected for higher productivity and longevity with reducing
cannibalism and flightiness, but not LGPS birds, had significantly lower blood level of
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DA, and better and faster adaptation to various stressors (Hester et al., 1996a, b). Our
findings suggest that heritability variations for DA concentrations reflect individual
coping strategies (Benus et al., 1991a, b; Vogel and Harris, 1991; Driscoll et al., 1998).
Similar to our findings, DA concentrations (Dimsdale and Ziegler 1991; Hjemdahl, 1993;
Rolih and Ober, 1995), and phenotype (Nikulina and Kapralova, 1991; Vadasz et al.,
1992; de Kloet et al., 1996) have been used as indicators to evaluate the capability of
animals in coping with stressors and well being. In the bi-directionally selected Roman
high (RHA/Verh) and low (RLA/Verh) avoidance rats, increased DA activity occurred in
the RHA/Verh rats, associated with increased locomotor activity, a marker of anxiety and
stressful status (Driscoll et al., 1990; Corda et al., 1997). Similar results have been
reported in rats exposed to uncontrollable electric tail-shock (Scott et al., 1996). In
addition, rats selected for swim-test resistance showed higher concentrations of DA
compared to rats selected for swim-test susceptible, these higher levels of DA were
correlated with higher struggling activity and larger decrease in home-cage ambulatory
activity and water intake after shock. Based on the present and previous observations, the
selection-induced differences in dopaminergic and behavioural responsiveness are
consistent with an interpretation that coping strategies of selected breeds are based on the
inheritance pattern and phenotypic correlations of behavioural, physiological and
neuroendocrine variables (Castanon et al., 1995). 

DA has also been thought to be involved in controlling domestic behaviours (Kuikka et
al., 1998; Korzan et al., 2006). In CNS, increased DA concentration was found in selected
brain regions in both humans and rodents following aggressive or defensive activities
(Lewis et al., 1994; Miczek et al., 1994; Kuikka et al., 1998; Mersmann, 1998; Volavka et
al., 2004; van Erp and Miczek, 2006). Higher levels of DA were also found in the brain of
Japanese quails with aggressive behaviour (Edens, 1987). In the periphery, dysfunctions
of DA were also involved in aggressive behaviours of patients with mental deficiency
(Marazziti et al., 1996). Similarly, higher baseline blood DA levels in our selected LGPS
birds could be associated with the reorganization of behaviours, i.e., higher cannibalism
and flightiness, resulting in higher mortality. In contrast, the lower baseline of blood DA
in our KGB birds associated with sedate and passive behaviours, as well as lower
cannibalism and flightiness. Our findings suggest that genetic selection pressures directly
and indirectly influences regulation of the brain dopaminergic system, and turn the
activation of the DA system into a favour to survival behaviour in KGB birds. Genotypic
dependence of animals in controlling domestic behaviour has also been demonstrated in
other species. Sgoifo and co-investigators (1996) reported aggressive rats with higher
activity of catecholamine system and short attack latency. Similarly, other studies
investigated changes in the pharmacological profile of DA system with dysfunctional
behaviours. Footshock induced aggression in mice can be facilitated by DA administered
centrally, and L-dopa, a DA precursor, administered peripherally (Datla et al., 1992).
Benus and co-investigators (1991a) also reported that aggressive male mice were more
sensitive to apomorphine, a D2 receptor agonist, than non-aggressive male. Biting
behaviour (Shaikh et al., 1991), footshock induced aggression (Datla et al., 1992), and
fighting (Ossowska et al., 1996) can be significantly facilitated by apomorphine, but were
suppressed by spiperone (Shaikh et al., 1991; Datla et al., 1992) and raclopride (Dennis et
al., 2006), D2 receptor antagonists, and by the dopamine blockers, haloperidol and
pimozide (Nikulina and Kapralova, 1992; Pant and Nath, 1993; De Leon, 1994). Data
from these studies suggest that DA plays a significant role in controlling aggressive
behaviour. 

Birds of LGPS line had a lower productivity but higher blood concentrations of DA
compared to counterparts of KGB line. These results are consistent with the hypothesis
that dopaminergic system is one of the main inhibitory neuronal systems that control the
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development of the reproductive systems (Becu-Villalobos and Libertun, 1995) and
productivity (Sotowska-Brochocka et al., 1994). Although identification of mechanisms
that underlie the inhibitory effects of DA on productivity in present lines is unclear,
previous experimental findings suggest that the regulation might be related to genetic
selection pressure induced changes in physiological functions of the neuroendocrine
system, including the HAP and hypothalamic-pituitary-gonadal (HAG) axes. Provided
studies had shown that endogenous DA secreted in the hypothalamus exhibited
catecholamine’s tonic inhibition of Luteinising hormone-releasing hormone (LHRH)
release (Contijoch et al., 1992) and suppression LH secretion (Martin et al., 1981). In
rodents, the biological functions of DA on productivity had been confirmed by
administrating exogenous DA that significantly reduced the LHRH level from the
hypothalamus and lowered LH secretion from the pituitary (Tasaka et al., 1985). Similar
results were obtained from poultry studies. In hens, increase in dopaminergic activity
inhibited the release of LH by exerting an inhibitory influence on the LHRH containing
cells in the hypothalamus (Macnamee and Sharp 1989). The effects of DA could be related
to increase in tyrosine hydroxylase activity (Thiery et al., 1995) and activity of DA
receptors (Andersson et al., 1988). The later had been verified by either administrating of
DA receptor agonist 2-Br-alpha-ergocryptine to lower plasma LH levels (Owens et al.,
1980) or blocking DA inhibitory effect by use of DA receptor blocker halperidol (Tasaka
et al., 1985). 

Although it is unclear what mechanisms underlie the regulation of release DA
peripherally in the presently selected birds, previous studies have reported that such
release could be induced by stress-related unbalance of activities of enzymes involved in
catecholamine metabolism (Kuchel, 1991). Stressor stimulates TH activity and, at the
same time, inhibits activities of the enzyme dopamine-β-hydroxylase (DβH) that converts
DA to NE (Kuchel et al., 1982). If DβH activation cannot keep pace with activation of TH,
DA synthesis predominates, and extra DA is released peripherally. Without detecting TH
activities in the presently selected lines, we can not assume that LGPS birds have a higher
TH activation. However, previous studied have shown that TH activation can be increased
by selection for domestic behaviour in animals (Dygalo et al., 1988; Kulikov et al., 1989),
and that hereditary based stress triggers different regulations of gene expressions for
catecholamine biosynthetic enzymes in the adrenal medulla (Nankova and Sabban, 1999).

EPRINEPHRINE AND NOEPRINEPHRINE AND SELECTION FOR HIGH
PRODUCTIVITY AND LONGEVITY WITH RADUCING CANNIBALISM

EP is released almost exclusively from the adrenal medullar, with a small amount
synthesized in the brain, while NP is released from sympathetic neurons, with significant
amount synthesized in the CNS, especially, in the hypothalamus (Bullock et al., 1995). As
“stress hormones”, both EP and NE participate in a number of physiologic and pathologic
processes, including regulation of emotion and motivation in response to stimulations.
Changes in EP and NE levels, as well as the ratio of EP/NE have been used as indicators
of the ‘organisms’ well-being and capability of cope to stress (Goldstein, 1981). In
response to stimulations from selected pressure, the lower blood concentration of EP and
lower ratio of circulating EP/NE found in KGB birds is consistent with the multifunctional
roles of EP and NE. In contrast, the LGP birds had a higher blood concentration of EP and
higher ratio of EP/NE, which correlates with their lower productivity and higher mortality
from cannibalism. Furthermore, the ratio of EP/NE has been used as an indicator of well-
being. A higher EP/NE ratio had been found in severely ill patients (Lechin et al., 1996),
stressful states (Vollmer, 1996; Piercecchi-Marti et al., 1999), and dominant male
monkeys (Dillon et al., 1992). Collectively, these data support our hypothesis that
genotypic or phenotypic variation of the EP/NE, in response to selection, may reflect
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individual coping strategies that control changes in the animal’s behavioural patterns.
In the present study the major factor causing the EP/EN increase in LGP birds was

higher concentration of EP, since there was not significantly different in the concentrations
of NE between the lines. A similar upregulation of EP concentration by increased
biosynthesis was found in turkeys selected for higher adrenal response to cold stress (HL)
(Brown and Nestor, 1974). Birds of the HL line also, similar to the LGP birds, laid
significantly less eggs and had hyperactivity and poorer feeding efficiency. The present
and previous results support the notion that genetic selection for various physiological
indexes could have altered the effects of the central and peripheral dopaminergic system
in an attempt to adapt to stress. It could mean that EP/NE can be used as an indicator for
selecting trail and evaluate the animal’s well-being. 

CORTICOSTERONE AND SELECTION FOR HIGH PRODUCTIVITY AND
LONGEVITY WITH REDUCING CANNIBALISM

Corticosterone is released from the adrenal cortex, the rate of its secretion being
controlled by activation of the hypothalamic-pituitary-adrenal (HPA) axis via a double
negative feedback loop. During pathologic conditions, such as under various stressors
including social stress, concentration of CORT can be increased by overriding the HAP
control system. As one of the “stress hormones”, CORT has multifunctional roles in both
normal and abnormal states, including regulation of the organism’s behavioural patterns,
coping styles and well-being. 

Although differences in the baseline concentration of CORT were not found here to be
significant, there was a tendency for CORT concentration to be higher in KGB birds than
in those of the reverse selected line. The heritably different levels of CORT between the
present selected lines could be the results of genetically different regulations in CORT
secretion as induced by selected pressure. Supporting our findings, the value of circulating
CORT has been used as a genetic selection criterion for evaluation of coping ability in
responsiveness to stress, such as in open-field exposure (Jones et al., 1992), physical and
manual restraint (Mills and Faure, 1991, Jones and Satterlee, 1996; Savory and Mann,
1997), fear of humans (Jones et al., 1994), cold and heart temperature stimulation (Brown
and Nestor, 1974; Hester et al., 1996a), and resistance to infection and inflammation
(Gross and Colmano, 1971). Based on these observations, changes of CORT levels
associated with different behaviours are a hereditary hallmark of the organism’s
responsiveness to stressors, and effects of CORT on stress-induced organism’s
responsiveness may depend on its levels, i.e., a level slightly or excessively changed from
its physiological basis, which could protect or destruct the organism’s coping capability
(Sapolsky and Meaney, 1986; Jones and Satterlee, 1996). The higher CORT concentration
in KGB birds than in LGPS birds (1.84 vs. 1.49 ng/ml, P=0.1) might be at the high end of
physiologic levels. Higher baseline levels of CORT signal a slight hyperactivity of the
CORT system in KGB birds compared that in LGP birds, which is consistent with the
previous findings that KGB birds had greater adrenal weights compared to those of control
line (Hester et al., 1996c). This view is further supported by observations in domestic
Larger White pigs (Fernandez et al., 1994; Blanchard et al., 1993) and aggressive rodents
(Korte et al., 1996). As such a tendency to higher baseline plasma cortisol levels was
found in subordinated pigs and in mice with longer attack latencies as compared with
those aggressive counterparts, respectively. In addition, Shively and Kaplan (1984)
determined that the subordinate Macaca fascicularis had heavier adrenal glands with
higher plasma glucose levels but less atherosclerosis than those of dominants. The above
findings suggest that upregulation of the adrenal system in KGB birds is part of a defence
mechanism against environmental challenges, which may underlie their higher
survivability, sedate and passive behaviours, and better coping to social, handling and
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environmental stressors (Hester et al., 1996a, b; Muir and Craig, 1996). Without stress
challenges, we can not assume that KGB birds have a lower reactivation of CORT system
in responses to stimuli. However, Sapolsk (1990) reported that, compared to high ranking
adult male baboons, low ranking males had a higher basal cortisol and lower cortisol in
response to the challenges of capture and corticol-releasing factor (CRF). Collectively,
these results are consistent with the notion that adrenal hypertrophy may be an indicator of
greater adaptation to stress (Siegel, 1971). Therefore, alterations in regulation of
adrenocortical activity appear to be essential in controlling of coping activity and styles,
as well as mobilization of body energy sources such as glycogen and triglyceride in
response to stressors (Gaillard and Al-Damluji, 1987; Tempel and Leibowitz, 1994). 

CORT defensive response to stress in KGB birds could be associated also with its role
as an immunomodulator. As such following challenges with Escherichia coli, infection
can be prevented by pre-treatment with CORT (Gross and Colmano, 1970). CORT can
also protect the organism from damage by an excessive response of its immune system
(Gross and Colmano, 1970; Munck et al., 1984). Our data and others are consistent with
the notion that, under physiologic condition, one of the primary roles of endogenous
glucocorticoids may be immunomodulation rather than immunosupression (Dhabhar et
al., 1994); and that small increases in levels of glucocorticoid may enhance immune
functions (Stanulis et al., 1997). Thus in one of our parallel studies has found that KGB
birds had an inherited basis of higher cellular-modulated immunity than that of LGPS
birds (Chen et al., 2000), In contrast, LGPS birds had higher levels of circulating
immunoglobulin G and higher ratios of circulating Heterophil/lymphocyte. The different
inherited characteristics of immunity could be associated with better and faster
adaptability to various stressors as reported previously (Hester et al., 1996a, b). In
addition, except for the direct effects of CORT on animal behaviours such as aggression
(Bonson et al., 1994; Kruk et al., 1998), the sedate and passive behaviours of the KGB
birds could also related to indirectly effects through the regulating serotonergic system
(Chaouloff, 1995; Joels et al., 1995). Thus, the effects of CORT may enhance brain
serotonergic turnover (Summers et al., 2000), increasing 5-HT formation from tryptophan
(Millard et al., 1972), and affect the activity of 5-HT receptors (Mendelson and McEwen,
1992). Collectively, these results are consistent with the protective functions of CORT and
could be, at least partly, related to natural mechanisms permitting animals to remain alert
and keep physiological homeostasis in response to relevant stimulators. 

Conversely, CORT could have inhibitory effects on the animal’s coping ability, and
negative influence physical parameters have been reported. For example, there were
approximately 2-3 folds significantly higher concentrations of CORT in birds genetically
selected for high adrenal response (HL) in response to mechanical restraint, compared to
that in birds of the low response line (Brown and Nestor, 1974). Birds of the HL failed to
maintain physiologic homeostasis, including slower growth (Brown et al., 1959),
overstated fear (Jones et al., 1992; Jones and Satterlee, 1996), were higher excitable
(Brown and Nestor, 1973, 1974), laid fewer eggs, and had higher natural mortality (Brown
and Nestor, 1974). 

A higher productivity and a tendency for CORT concentration to be higher in KGB birds
compared to those of LGBS line suggest that CORT may have functions in regulating
productivity of hens. The hypothesis is consistent with previous findings that the ovary is
the one of the most probable target tissue for CORT (Etches et al., 1983). CORT may exert
its ovulation-inducing effect directly on the mature follicle (Etches et al., 1984; Lang et
al., 1984) through an anatomical juxtaposition of the left ovary and adrenal gland (Etches
et al., 1984), or may alter the responsiveness of ovarian tissue to gonadotropins through
modulating the reaction of the hypothalamus to tropic stimuli (Etches et al., 1984). A
previous study has demonstrated that CORT involves in the preovulatory surge of LH
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which results in the first egg of a sequence (Sharp and Beuving, 1978). On the other hand,
effects of CORT on productivity may through affects the serotonergic, dopaminergic
systems or both which have been known to be involved in regulation of reproduction
(Summers et al., 2000; also see above discussion). In addition, CORT has impact on
inflammatory and immunological processes (Gaillard and Al-Damluji, 1987). At
physiological levels CORT enhance immune functions (Stanulis et al., 1997), and protects
organisms from reaching excessive immune reactive levels to cause damage to itself
(Munck et al., 1984), or inhibit autoimmunity which has be identified as one of the major
reasons of impaired productivity (Bacon, 1987). Furthermore, previous studies have
evidenced that CORT has important effects on caloric intake. Under normal condition,
endogenous CORT involves in controlling ingestion and metabolism (Tempel and
Leibowitz, 1994), such as catabolic effects on carbohydrate, fat and protein to maintain
glucose homeostasis. Whether higher blood concentration of CORT in KGB birds affect
feed efficiency is unclear, previous study had shown that KGB birds fed more, at least at
first three weeks during the initial adaptation to layer house cages, than those of
commercial lines (Craig and Muir, 1996b). The better feeding behaviours of KGB birds
may be associated with their better adaptability to a variety of stressors (Hester et al.,
1996a, b), and their higher productivity. Currently, it is unclear whether LPGS birds have
more active adrenal system in synthesizing CORT in response to stress, but previous study
in the Syracuse high- (SHA) and low-avoidance (SLA) strains of rats has shown that, in
response to stress, the SHA rats with smaller adrenals had larger responses of the HPA axis
(Brush et al., 1991). 

Taken together, these data suggest that the effect of CORT on the animal’s coping ability
is biphasic and dependent on its concentration, which results in its attempt to engage or
avoid environmental challenges, i.e., at physiological levels it can protect the organism to
cope with stressors, whereas at pathological levels it results in declining coping ability.
Stress-induced reactions of the CORT system may be dependent on the species, breeds and
stressors used as well as duration and frequency of stressor presentation. Although
conflicting results have been reported, there is consensus as to the cellular mechanisms
which regulate CORT secretion, i.e., mediators are from the HPA axis. Alterations in the
levels of corticotrophin-releasing hormone (CRH) and adrenocorticotropin (ACTH)
control CORT secretion from adrenal glands (Rots et al., 1995). Our present data support
the view that individual differences in coping styles is coherent with a set of functions of
the neuroendocrine system that underlies behavioural characteristics (Sgoifo et al., 1996).

In conclusion, the present study demonstrates that selection for high and low group
productivity and longevity with alterations in cannibalism and flightiness affected the
regulations of the neuroendocrine system of selected birds, and that CORT and
monoamines, such as 5-HT, DA, EP and NE, were differently regulated by selection
pressure. Compared to the reverse selected birds, KGB birds selected for higher
productivity and longevity with higher domestic behaviours, i.e., low cannibalism and
flightiness, may have a positive alterations in the neuroendocrine system, i.e., lower blood
concentrations of 5-HT, DA and EP, and higher levels of plasma CORT, which may be
associated with their better coping to a novel environment and greater resistance to
stressors. The unique homeostatic characteristics of each selected line may provide a
neurobiological basis for investigating effects of genetic factors on physiological
functions of biogenic amines involved in productivity and longevity related to domestic
behaviours. The present data and data from others suggest that blood 5-HT, DA and EP as
well as ratio of EP/NE, can be used as physiological indicators for genetically selecting
birds with great resistance to social stress to eliminating beak trimming. This finding could
be extended to other farm animals for improving their well-being. 
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Table 1  Effect of genetic selection on survivability and productivity in hens.

Group Survivability Productivity

Longevity Mortality Egg Number Egg Mass Egg Weight
(Days) (%) (Per Cage) (Per Cage, g/day) (g/each)

KGB 363a ± 0.4 1.3a ± 0.1 3543a ± 139 574a ± 24 59.4a ± 0.6

LGPS 193b ± 21. 8.6b ± 0.5 1297b ± 140 208b ± 22 58.9a ± 0.8

Overall 329c ± 2.0 2.3c ± 0.1 2850c ± 26.9 450c ± 4.4 57.8a ± 0.1

1) a,b,cLines with different superscript are significantly different (P<0.01).
2) Values represent the Mean ± SEM. The line “Overall” was based on the mean of 768 colony cages (9216
birds), and the KGB and LGP line were based on the mean of 12 cages (144 birds) of each line, respectively.

Table 2  Genetic selection-induced alterations in blood concentrations of serotonin catecholamines, and
corticosterone in hens.

Groups DA EP NE EP/NE CORT
(ng/ml) (ng/ml) (ng/ml) (Ratio, %) (mg/ml)

KGB 0.59 ± 0.08a 0.30 ± 0.06a 0.86 ± 0.12 34.0a 1.87 ± 0.19

LGPS 2.42 ± 0.76b 0.59 ± 0.13b 0.84 ± 0.13 72.5b 1.49 ± 0.21

a,bMeans within a column with different superscript are statistically different (P<0.01). 
The KGB and LGP lines were selected from high and low productivity and survivability resulting from
cannibalism and flightiness. 5-HT, serotonin; DA, dopamine; EP, Epinephrine; and NE, Norepinephrine.
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Figure 1  Quantity analysis of blood serotonin levels using HPLC. a) calibration curve, and b) effect of
genetic selection on the blood concentration of serotonin. Asterisk indicates significantly different between
selected lines. P<0.01. 

Figure 2  Examples of effects of genetic selection on blood concentrations of dopamine, epinephrine and
norepinephrine. a) calibration curve, b) data from the KGB bird, and c) data from the LGP bird. The peak
height of each neurochemistry in each graph was referred to its concentration based on the calibration
cure, respectively.
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